On Lyubeznik’s Invariants and the Vanishing of Local Cohomology

نویسنده

  • PETER SCHENZEL
چکیده

This paper contributes to the study of local cohomology and topological, in particular connectedness properties. Let I denote an ideal of a regular local ring (R,m) containing a field. There is a description of the Lyubeznik number λd,d(R/I), d = dimR/I, in terms of the topology of V (IR̂). In particular, λd,d(R/I) = 1 if and only if V (IR̂) is connected in codimension one. This provides an alternative proof of results shown by Lyubeznik in case of prime characteristic and by Zhang. Further results on the Lyubeznik numbers are shown. They provide vanishing results on the local cohomology modules H I(R), in particular for i = dimR− 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lyubeznik’s Invariants for Cohomologically Isolated Singularities

In this note I give a description of Lyubeznik’s local cohomology invariants for a certain natural class of local rings, namely the ones which have the same local cohomology vanishing as one expects from an isolated singularity. This strengthens our results of [BB04] while at the same time somewhat simplifying the proofs. Through examples I further point out the bad behavior of these invariants...

متن کامل

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.

متن کامل

ON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS

Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...

متن کامل

On the Associated Primes of the generalized $d$-Local Cohomology Modules

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

متن کامل

On natural homomorphisms of local cohomology modules

‎Let $M$ be a non-zero finitely generated module over a commutative Noetherian local ring $(R,mathfrak{m})$ with $dim_R(M)=t$‎. ‎Let $I$ be an ideal of $R$ with $grade(I,M)=c$‎. ‎In this article we will investigate several natural homomorphisms of local cohomology modules‎. ‎The main purpose of this article is to investigate when the natural homomorphisms $gamma‎: ‎Tor^{R}_c(k,H^c_I(M))to kotim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009